skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jornada, Felipe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The layer stacking order in 2D materials strongly affects functional properties and holds promise for next-generation electronic devices. In bulk, octahedral MoTe2possesses two stacking arrangements, the ferroelectric Weyl semimetal Tdphase and the higher-order topological insulator 1T′ phase. However, in thin flakes of MoTe2, it is unclear if the layer stacking follows the Td, 1T′, or an alternative stacking sequence. Here, we use atomic-resolution scanning transmission electron microscopy to directly visualize the MoTe2layer stacking. In thin flakes, we observe highly disordered stacking, with nanoscale 1T′ and Tddomains, as well as alternative stacking arrangements not found in the bulk. We attribute these findings to intrinsic confinement effects on the MoTe2stacking-dependent free energy. Our results are important for the understanding of exotic physics displayed in MoTe2flakes. More broadly, this work suggestsc-axis confinement as a method to influence layer stacking in other 2D materials. 
    more » « less
  2. Electromodulation spectroscopy enables optical absorption characterization of interlayer excitons in two-dimensional heterostructures. 
    more » « less
  3. We report the polarization-dependent Raman spectra of exfoliated MoI3, a van der Waals material with a “true one-dimensional” crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals an anomalous behavior suggesting a phase transition of magnetic origin. Theoretical considerations indicate that MoI3 is an easy-plane antiferromagnet with alternating spins along the dimerized chains and with inter-chain helical spin ordering. The calculated frequencies of phonons and magnons are consistent with the interpretation of the experimental Raman data. The obtained results shed light on the specifics of the phononic and magnonic states in MoI3 and provide a strong motivation for further study of this unique material with potential for future spintronic applications. 
    more » « less
  4. null (Ed.)
    An exciton, a two-body composite quasiparticle formed of an electron and hole, is a fundamental optical excitation in condensed matter systems. Since its discovery nearly a century ago, a measurement of the excitonic wave function has remained beyond experimental reach. Here, we directly image the excitonic wave function in reciprocal space by measuring the momentum distribution of electrons photoemitted from excitons in monolayer tungsten diselenide. By transforming to real space, we obtain a visual of the distribution of the electron around the hole in an exciton. Further, by also resolving the energy coordinate, we confirm the elusive theoretical prediction that the photoemitted electron exhibits an inverted energy-momentum dispersion relationship reflecting the valence band where the partner hole remains, rather than that of conduction band states of the electron. 
    more » « less